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Plane Wave Excitation of an

Infinite Dielectric Rod
R. B. Keam,

Abstract— The analysis of the fields induced inside and scat-

tered externally by an infinite dielectric rod in an incident
plane-polarized TEM wave is presented. It is assumed that the

incident wave is polarized parallel to the rod, and that the

dielectric has some significant loss. The analysis accounts for axial
variation of the fields both inside and scattered by the rod. An

investigation of the field distributions for a specific case is given,

along with a brief discussion of the evaluation of integer order
Bessel functions with complex arguement.

I. INTRODUCTION

T HE PROBLEM of excitation of a dielectric rod has been

widely studied [1], and it is well known that analyses of

this kind are an important first step in considering problems

such as the dielectric rod in a waveguide or cavity. Analysis

problems involving scattering of fields from objects in free-

space have long been in existence [2], yet to date there have

been few published investigations of the field distributions

induced inside the cylinder for the case where the object is

electrically large and consists of a lossy dielectric material.

In many applications, such as microwave heating of dielec-

tric objects, the exact field distribution within the object is of

some interest. While investigations of this type are usually per-

formed using numerical techniques such as finite domain/finite

time (FD-TD) or finite element, the results produced by these

methods are often limited to objects that are electrically small

to moderate in size. The development of numerical methods

such as FD-TD algorithms for examining microwave circuits

and components has not diminished the need for analytically

based models. While the geometries that can be considered

by analytical-based models are necessarily simpler than those

that can be handled by numerical techniques, an advantage

is that analytically based models often offer insight into the

individual contribution and effects of the various physical

parameters of the problem. In some cases, analytical models

are used to confirm the performance of numerical models in a

similar manner to the way experimental results are often used

to confirm the predictions of analytical models.

The method presented here for the analysis expresses the

incident plane parallel wave as an infinite series of cylindrical

waves whose origin lies at the center of the dielectric cylinder.

Expressions for the fields scattered externally by the rod and

total fields induced within the rod are given in terms of

an infinite set of unknown coefficients to be determined by

applying the appropriate boundary conditions The boundary
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Fig. 1. Infinite dielectric rod in free space.

conditions that the tangential components of the electric and

magnetic fields are continuous across the dielectric boundary

are applied in order to produce closed-form expressions for

this set of unknown coefficients.

Results are presented that show the field scattered from and

induced within a rod for both electrically small and large cases.

It is shown that for cases of moderate dielectric permittivity

that the fields may be assumed to be axially symmetric for

values of rod diameter less than 10’?7o of a wavelength.

II. THEO.RY

Consider an infinitely long circularly cylindrical dielectric

rod of radius r = c and relative permittivity .sT, which may

be complex valued for dielectrics with loss, extending from

–cc < z < cc with center located at x = O and y = O

(see Fig. 1). It is assumed that all field quantities have a time

dependence of e~ut and that p. = 1. The case examined here

is that where there is a plane wave polarized with the electric

field, E~c, parallel to the z-axis incident on the rod.

By solving suitable boundary conditions at the rod surface,

the scattered fields and field distribution inside the rod may be
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Fig. 2. Normalized electric field distribution induced inside a dielectric rod

for the case where f = 2 GHz, c = 20 mm, and e. = 20 – il.

determined. The incident plane wave may be written as:

E.(z) = Eoe-jk’ (1)

where 130 is the amplitude of the field and k is the wave

number of the region external to the dielectric rod. This

incident wave may be expressed in cylindrical co-ordinates

as [3]:

m

(2)Einc(r, 0) = 130 ~ (–j)nJn(kr)e~noz
‘n. -lx

where Jm is an nth order Bessel junction of the first kind.

The associated magnetic field He (r, 0) may be found from

Maxwell’s equations [4], i.e.

where q is the intrinsic impedance of the region outside the

dielectric rod (for free space q = 377 Q) and J: is the first

derivative of J~(z).

It can be shown that the fields scattered-from the rod may

be written as:
lx

(4)EsCat(r, O) = ~ A.H~J(kr)e~”8z

.CO

H$ca’(r, 0) = ~ ~ An(H$j)’(kr)e~”@ (5)
n.—m

(z) and (~~) )’ is the nth order Hankel function ofwhere H~

the second kind and first derivative. Similarly the fields inside

the rod may by given by:

m

ErOd(r, 0) = ~ BnJn(k?r)e~nOz
(6)

I&d(r, 19)= ~ ~ Bn.J~(kdr)e~no (7)
*.—cc

where kd = k- is the wave number inside the dielectric

rod [5], (a brief discussion of the evaluation of the first-order

Bessel function for the case where the argument is complex

is given in Appendix-I) and where An and Bn are unknowns

to be determined by applying the boundary condition that the

tangential electric and magnetic fields are continuous across

the dielectric boundary at r = c.

Applying the boundary conditions and noting that these

conditions must be true for all values of 0, it can be shown that:

Eo(–j)”J.(kc) + AnH~2)(kc) = BJ.(k~c)

~{(-j)nJA(kc)+An(Hi2))’(kc)}= a~n~:(~dc)
(8)

From (8) it is straightforward to show that:

A.=–Eo(–j)”
J:(kc)Jn(k~c) - J~(k~c)Jn(kc)

Jn(kdc)(Hi2))’(kc) – JJkdc)Hi2@c)

(9)

B. = Eo(–j)”
JJkc)(Hf))’(kc) – ~:(kc)H~2) (kC)

Jn(kdc)(H$2))’(kc) – ~~(kdC)~A2) (kC)

(lo)

The electric field distribution scattered by the rod may be

calculated by using (4) and (9). Similarly, the field distribution

within the rod may by calculated using (6) and (10).

III. RESULT

The expressions derived in the previous section are now to

be used to investigate the electric field distribution induced

inside a rod for various values of rod diameter c and relative

permittivity e,. It is assumed that the frequency of excitation

is 2 GHz.

Fig. 2 shows the results (light regions refer to high field

intensity) for the case c = 20 mm and CT = 20 – jl (i.e.

C/A = 60yo), and it can be seen fiat fie fields show distinct

regions of maxima and minima. This result has important

consequences for the use of microwave energy in heating

electrically large objects. Fig. 3 shows the results for the case

where c = 3.5 mm and CT= 20–jl. For this case c/A = 10?ZO,

and it maybe seen that the field distributions are approximately

axially symmetric.

IV. CONCLUSION

A theoretical model of the fields induced in and scattered

from an infinite dielectric rod by a plane-polarized TEM wave

have been given. The analysis was performed by expressing

the incident field as an infinite sum of cylindrical waves and

solving the appropriate boundary conditions at the rod surface.

A brief investigation of the field distribution inside the

rod for several specific values of rod diameter and relative

permittivity showed that for a rod diameter less than 10% of
a waveguide the fields inside the rod may be considered to be

approximately axially symmetric.



328 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO. 10, OCTOBER 1994

1’

0.5’

0

–0.9

–r
–1 –0.5 o 0:5 i

bl

Fig. 3. Normalized electric field distribution induced inside a dielectric rod
forthecasewhere~=2 GHz, c= 3.5 mm, ande, =20–jl.

APPENDIX

Theresults presented here require the evaluation of Bessel

functions of the first and second kind for integer order and

complex argument. While these functions are standard in many

mathematical computer packages for either real or purely

imaginary argument,” often they are not for the case where

the argument is complex.

Evalution of Jn (z) is achieved using the algorithm [6]

whereby the Fourier series coefficients of the Bessel generating

function are determined:

._n N–1

~m(.z’) = ‘F ~ e~z c0s(2”k/N)e-~2”nk/N (11)

k=o

where N is related to the bandwidth of the generating function

and should be large enough to comply with the Shanon-

Kotelnikov sampling theorem [7]. The evaluation of Yn (z)

is achieved using the following series expansion [3]:

- ; E(-1)’{@(k)+@(n + ~)p’)zk+”
k=O

k!(n+k)!

(12)

where -y = 0.5772156, and where O(p) = ~~=1 I/k and

0(0) = o.

The Bessel function derivatives are calculated using the well

known recurrence formulae:

‘B”(z)– ~n+l(z)l?~(z) = —
x

(13)

A complete discussion of evaluation of Bessel functions of the

first and second kind for integer order and complex argument

is given by du Toit [6].
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