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Plane Wave Excitation of an
Infinite Dielectric Rod

R. B. Keam, Member, IEEE

Abstract— The analysis of the fields induced inside and scat-
tered externally by an infinite dielectric rod in an incident
plane-polarized TEM wave is presented. It is assumed that the
incident wave is polarized parallel to the rod, and that the
dielectric has some significant loss. The analysis accounts for axial
variation of the fields both inside and scattered by the rod. An
investigation of the field distributions for a specific case is given,
along with a brief discussion of the evaluation of integer order
Bessel functions with complex arguement.

1. INTRODUCTION

HE PROBLEM of excitation of a dielectric rod has been

widely studied [1], and it is well known that analyses of
this kind are an important first step in considering problems
such as the dielectric rod in a waveguide or cavity. Analysis
problems involving scattering of fields from objects in free-
space have long been in existence [2], yet to date there have
been few published investigations of the field distributions
induced inside the cylinder for the case where the object is
electrically large and consists of a lossy dielectric material.

In many applications, such as microwave heating of dielec-
tric objects, the exact field distribution within the object is of
some interest. While investigations of this type are usually per-
formed using numerical techniques such as finite domain/finite
time (FD-TD) or finite element, the results produced by these
methods are often limited to objects that are electrically small
to moderate in size. The development of numerical methods
such as FD-TD algorithms for examining microwave circuits
and components has not diminished the need for analytically
based models. While the geometries that can be considered
by analytical-based models are necessarily simpler than those
that can be handled by numerical techniques, an advantage
is that analytically based models often offer insight into the
individual contribution and effects of the various physical
parameters of the problem. In some cases, analytical models
are used to confirm the performance of numerical models in a
similar manner to the way experimental results are often used
to confirm the predictions of analytical models.

The method presented here for the analysis expresses the
incident plane parallel wave as an infinite series of cylindrical
waves whose origin lies at the center of the dielectric cylinder.
Expressions for the fields scattered externally by the rod and
total fields induced within the rod are given in terms of
an infinite set of unknown cofficients to be determined by
applying the appropriate boundary conditions The boundary
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Fig. 1. Infinite dielectric rod in free space.

conditions that the tangential components of the electric and
magnetic fields are continuous across the dielectric boundary
are applied in order to produce closed-form expressions for
this set of unknown coefficients.

Results are presented that show the field scattered from and
induced within a rod for both electrically small and large cases.
It is shown that for cases of moderate dielectric permittivity
that the fields may be assumed to be axially symmetric for
values of rod diameter less than 10% of a wavelength.

II. THEORY

Consider an infinitely long circularly cylindrical dielectric
rod of radius 7 = ¢ and relative permittivity ¢,, which may
be complex valued for dielectrics with loss, extending from
—o0 < z < oo with center located at z = 0 and y = 0
(see Fig. 1). It is assumed that all field quantities have a time
dependence of e’“? and that p, = 1. The case examined here
is that where there is a plane wave polarized with the electric
field, E;“C, parallel to the z-axis incident on the rod.

By solving suitable boundary conditions at the rod surface,
the scattered fields and field distribution inside the rod may be
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Fig. 2. - Normalized electric field distribution induced inside a dielectric rod
for the case where f = 2 GHz, ¢ = 20 mm, and &, = 20 — j1.

determined. The incident plane wave may be written as:
E.(z) = Epe™ /% (1)

where Ej is the amplitude of the field and k is the wave
number of the region external to the dielectric rod. This
incident wave may be expressed in cylindrical co-ordinates
as [3]:
E»(r,0) = Eo Z (=)™ (kr)eJ"9 )
n=—0o0
where J,, is an nth order Bessel junction of the first kind.
The associated magnetic field Hy(r,§) may be found from
Maxwell’s equations [4], i.e.
8
Hime(r,0) = E (r,0)
- E i ‘
. J 0 Z ( ] nJ/(kT)eJnG (3)

n=—-—0o00

where 7 is the intrinsic impedance of the region outside the
dielectric rod (for free space n = 377 ) and J}, is the first
derivative of J,,(2).

It can be shown that the fields scattered from the rod may
be written as:

> AuHD (kr)e™? @

n=—oo

JZA H®Y

n=—oo

B (r, 0) =

H5™(r (kr)e™®  (5)

where H{? and ( (2)) is the nth order Hankel function of
the second kind and first derivative. Similarly the fields inside
the rod may by given by:

Erd(r,0) = Z BpJn(kr)ei™® (6)

n=—o0

H4(r,0) = ” Z B J. (kdr)ein? %)

n=—oo

where k¢ = k./€, is the wave number inside the dielectric
rod [5], (a brief discussion of the evaluation of the first-order
Bessel function for the case where the argument is complex
is given in Appendix’T) and where A,, and B,, are unknowns
to be determined by applying the boundary condition that the

' tangential electric and magnetic fields are continuous across

the dielectric boundary at r = c.
Applying the boundary conditions and noting that these
conditions must be true for all values of #, it can be shown that:

Eo(—5)"Jn(kc) + AnHP (kc) = BnJn (k%)
—JE a1/ '
L0 { () k) + An(HY (k) } = 5 BT ()
(8)
From (8) it is straightforward to show that:
o JL(ke) T (k) = b (kdc)J, (ke)
Ap=—Eqo(~ :
o(=3) Tn(k4e)(HD) (ke) — J1,(kie) HD (ke)
®
B = Bo(=i)"= Ju(ke) (H))' (ke) = Tn (k) Hy (ke)
Tn(kc)(HDY (ke) — T4 (kéc) HP (ke)
(10)

The electric field distribution scattered by the rod may be
calculated by using (4) and (9). Similarly, the field distribution
within the rod may by calculated using (6) and (10).

III. RESULT

The expressions derived in the previous section are now to
be used to investigate the electric field distribution induced
inside a rod for various values of rod diameter ¢ and relative
permittivity e,. It is assumed that the frequency of excitation
is 2 GHz.

Fig. 2 shows the results (light regions refer to high field
intensity) for the case ¢ = 20 mm and €, = 20 — j1 (ie.
¢/A = 60%), and it can be seen that the fields show distinct
regions of maxima and minima. This result has important
consequences for the use of microwave energy in heating
electrically large objects. Fig. 3 shows the results for the case
where ¢ = 3.5 mm and ¢, = 20— j1. For this case ¢/\ = 10%,
and it may be seen that the field distributions are approximately
axially symmetric.

IV. CONCLUSION

A theoretical model of the fields induced in and scattered
from an infinite dielectric rod by a plane-polarized TEM wave
have been given. The analysis was performed by expressing
the incident field ag¢ an infinite sum of cylindrical waves and
solving the appropriate boundary conditions at the rod surface.

A brief investigation of the field distribution inside the
rod for several specific values of rod diameter and relative
permittivity showed that for a rod diameter less than 10% of
a waveguide the fields inside the rod may be considered to be
approximately axially symmettic.



328 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO. 10, OCTOBER 1994

Fig. 3. Normalized electric field distribution induced inside a dielectric rod
for the case where f = 2 GHz, ¢ = 3.5 mm, and £, = 20 — 51.

APPENDIX

The results presented here require the evaluation of Bessel
functions of the first and second kind for integer order and
complex argument. While these functions are standard in many
mathematical computer packages for either real or purely
imaginary argument, often they are not for the case where
the argument is complex.

Evalution of J,(z) is achieved using the algorithm [6]
whereby the Fourier series coefficients of the Bessel generating
function are determined:

p N—1
Jn(?«’) — ]T Z gz cos(2mk/N) ,—j2mnk/N

k=0

an

where NV is related to the bandwidth of the generating function

and should be large enough to comply with the Shanon-
Kotelnikov sampling theorem [7]. The evaluation of Y, (z)
is achieved using the following series expansion [3]:

Ya(2) = = (In(a/2) + 7} Jn2)

1 n—1
— =) (n—k—1DNz/2)%*
k=0
1 k ($/2)2k+n
(12)
where v = 0.5772156, and where ®(p) = Y %_, 1/k and

®(0) = 0.
The Bessel function derivatives are calculated using the well
known recurrence formulae:

By(z) = "Pnl2)

— Bnt1(2) (13)

A complete discussion of evaluation of Bessel functions of the
first and second kind for integer order and complex argument
is given by du Toit [6].
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